

PwrPak7D-E1

Compact Dual Antenna Enclosure Delivers Leading SPAN GNSS+INS Technology by Hexagon | NovAtel

Dual Antenna Input

Multi-frequency, dual antenna input allows the PwrPak7D-E1 to harness the power of NovAtel RTK and ALIGN functionality. This makes the PwrPak7D-E1 ideal for ground, marine or aircraft based systems, providing industry-leading GNSS multi-constellation heading and position data in static and dynamic environments.

World Leading GNSS+INS Technology

SPAN GNSS+INS technology brings together two different but complementary technologies: Global Navigation Satellite System (GNSS) positioning and inertial navigation. The absolute accuracy of GNSS positioning and the stability of Inertial Measurement Unit (IMU) gyro and accelerometer measurements are deeply coupled to provide an exceptional 3D navigation solution that is stable and continuously available, even through periods when satellite signals are blocked.

SPAN-Enabled MEMS Receiver

The PwrPak7D-E1 contains an Epson G320N MEMS IMU to deliver world class SPAN technology in an integrated, single box solution. This product is commercially exportable and provides an excellent price/performance/size GNSS+INS solution.

Future-Proofed Scalability

Capable of tracking all present and upcoming GNSS constellations and satellite signals, the PwrPak7D-E1 is a robust, high precision receiver that is software upgradeable in the field to provide the custom performance required for your application demands.

The PwrPak7D-E1 has a powerful OEM7 GNSS engine, integrated MEMS IMU, built in Wi-Fi, onboard NTRIP client and server support, and 16 GB of internal storage.

Precise Thinking Makes It Possible

Our GNSS products have set the standard in quality and performance for over 20 years. State-of-the-art, lean manufacturing facilities in our North American headquarters produce the industry's most extensive line of OEM receivers, antennas and subsystems.

Benefits

- Small, low-power, all-in-one GNSS/INS enclosure
- Easy integration into space and weight constrained applications
- Commercially exportable system
- Rugged design ideal for challenging environments
- Enhanced connection options including serial, USB, CAN and Ethernet
- Future proof for upcoming GNSS signal support

Features

- Low noise commercial grade Gyros and Accelerometers
- Dedicated Wheel Sensor input
- TerraStar correction services supported over multi-channel L-Band and IP connections
- Advanced interference mitigation features
- SPAN GNSS+INS capability with configurable application profiles
- Dual antenna ALIGN heading
- 16 GB of internal storage
- Built-in Wi-Fi support

PwrPak7D-E1 Product Sheet

Performance¹

Signal Tracking²

GPS L1 C/A, L1C, L2C, L2P, L5 GLONASS³ L1 C/A, L2 C/A, L2P, L3, L5 Galileo4 E1, E5 AltBOC, E5a, E5b BeiDou B1I, B1C, B2I, B2a, B2b QZSS L1 C/A, L1C, L2C, L5 NavIC (IRNSS) 15 SBAS5 L1, L5 up to 5 channels I-Band⁵

Horizontal Position Accuracy (RMS)

Single Point L1	1.5 m
Single Point L1/L2	1.2 m
SBAS ⁶	60 cm
DGPS	40 cm
TerraStar-L ⁷	40 cm
TerraStar-C PRO ⁷	2.5 cm
TerraStar-X ⁷	2 cm
RTK	1cm+1ppm
Initialization time	< 10 s
Initialization reliab	ility >99.9%

ALIGN Heading Accuracy

ccuracy (RMS)
08 deg
05 deg

Maximum Data Rate

GNSS Measurements	up to 20 Hz
GNSS Position	up to 20 Hz
INS Solution	up to 200 Hz
IMU Raw Data Rate	125 Hz or
	200 Hz

Time to First Fix	
Cold start ⁸ Hot start ⁹	< 39 s (typ) < 20 s (typ)
Time Accuracy ¹⁰	20 ns RMS
Velocity Limit ¹¹	515 m/s

IMU Performance¹²

Gyroscope Performance Input range ±150 deg/s Rate bias stability 3.5 deg/hr Angular random walk 0.1 deg/√hr

Accelerometer Performance

Range ±5 g Bias stability 0.1 mg Velocity random walk 0.05 m/s/√hr

Communication Ports

1 RS-232 2 RS-232/RS-422	up to 460,800 bps 2 selectable	
	up to 460,800 bps	
1USB 2.0 (device	e) HS	
1USB 2.0 (host)	HS	
1 Ethernet	10/100 Mbps	
1CAN Bus	1Mbps	
1Wi-Fi		
3 Event inputs		
3 Event outputs		
1 Pulse Per Second output		
1 Quadrature Wh	eel Sensor input	

Physical and Electrical

Dimensions 147 x 125 x 55 mm Weight 510 g

	Power					
	Input voltage Power consumptic	+9 to +36 VDC on ¹³ 4.15 W				
	2 Antenna LNA Power Outputs					
	Output voltage 5 VDC ±5%					
	Maximum current					
	Connectors					
	2 Antenna	SMA				
	USB device	Micro A/B				
	USB host	Micro A/B				
	Serial, CAN, Event I/O					
	E .1	DSUB HD26				
	Ethernet	RJ45				
	Data Logging	Push button				
r	Power SAL M12, 5 pin, male					
	Status LEDs					
	Power					
s	GNSS					
	INS Data Lagging					
S	Data Logging USB					
	030					
	Environmenta	al				
S	Temperature					
	•					
	1 0	40°C to +75°C				
	Storage -	40°C to +85°C				

Dowor

Humidity 95% non-condensing

Ingress Protection Rating IP67

Vibration (operating)

Random MIL-STD 810H. Method 514.8 (Cat 24, 20 g RMS) Sinusoidal IEC 60068-2-6

Performance During GNSS Outages¹

• DSUB HD26 to DB9 RS-232 cable

Optional Accessories

- Full breakout cable for DSUB HD26 connector
- DSUB HD26 to M12 IMU cable
- RJ45 Ethernet cable
- VEXXIS GNSS-500 and GNSS-800 series antennas
- Compact GNSS antennas
- GrafNav/GrafNet
- Inertial Explorer
- NovAtel Application Suite

Hardware Options

PwrPak7DM-E1 no Wi-Fi, no 16 GB internal storage

Outage Duration	Positioning Position Accura		racy (M) RMS Velocity Accuracy (M/S) RMS		Attitude Accuracy (Degrees) RMS				
	Mode	Horizontal	Vertical	Horizontal	Vertical	Roll	Pitch	Heading	
0 s	RTK ¹⁴	0.02	0.03	0.020	0.020 0.010				
	PPP	0.06	0.15			0.020	0.020	0.090	
	SP	1.00	0.60		l				
	Post Processed ¹⁵	0.01	0.02		0.010	0.009	0.009	0.044	
10 s	RTK ¹⁴	0.27	0.13	0.070	0.020	0.040	0.040	0.130	
	PPP	0.31	0.25						
	SP	1.25	0.70						
	Post Processed ¹⁵	0.02	0.02		0.010	0.009	0.009	0.044	
60 s	RTK ¹⁴	15.02	1.63	0.720					
	PPP	15.06	1.75		0.720	0.065	0.095	0.095	0.210
	SP	16.00	2.20						
	Post Processed ¹⁵	0.35	0.10	0.030	0.011	0.014	0.014	0.048	

1. Typical values. Performance specifications subject to GNSS system characteristics, Signal-in-Space (SIS) operational degradation, ionospheric and tropospheric conditions, satellite geometry, baseline length, multipath • Typical values - International expectition of the subject to avoid system in interpolation in opport of the subject to avoid system in the polarity opport of the subject to avoid system in the polarity opport of the subject to avoid system in the polarity opport of the system is a system in the polarity opport of the system in the polarity opport of the system is a system in the polarity opport of the system in the polarity opport of the system is a system in the polarity opport of the system is a system in the polarity opport of the system is a system in the polarity opport of the system is a system in the polarity opport of the system is a system in the polarity opport of the system is a system in the polarity opport of the system is a system in the polarity opport of the system is a system in the polarity opport of the system is a system in the polarity opport of the system is a system in the polarity opport of the system is a system in the polarity opport of the system is a system in the polarity opport of the system is a system is a system is a system is a s without interference mitigation. Consult the OEM7 User Documentation for power supply considerations 14.1 ppm should be added to all position values to account for additional error due to baseline length. 15. Post-processing results using Inertial Explorer software. The survey data used to generate these statistics had frequent changes in azimuth.

Contact Hexagon | NovAtel

sales.nov.ap@hexagon.com1-800-NOVATEL (U.S. and Canada) or 403-295-4900 | China: 0086-21-68882300 | Europe: 44-1993-848-736 | SE Asia and Australia: 61-400-883-601. For the most recent details of this product: novatel.com

ALIGN, GrafNav/GrafNet, Inertial Explorer, NovAtel, OEM7, PwrPak7, SPAN, TerraStar and VEXXIS are trademarks of NovAtel, Inc., entities within the Hexagon Autonomy & Positioning division, their affiliated entities, and/or their licensors. All other trademarks are properties of their respective owners

©2020 NovAtel Inc. All rights reserved. NovAtel is part of Hexagon, NovAtel makes no representation or warranty regarding the accuracy of the information in this publication. This document gives only a general description of the product(s) or service(s) offered by NovAtel, and, except where expressly provided otherwise, shall not form part of any contract. Such information, the products and conditions of supply are subject to change without notice.

Acceleration (operating) MIL-STD-810H, Method 513.8

Procedure II (16 g)

Bump (operating)

IEC 60068-2-27 (25g)

Shock (operating)

MIL-STD-810H, Method 516.8. Procedure 1. 40 g 11 ms terminal sawtooth)

Compliance

FCC, ISED, CE and Global Type Approvals

Included Accessories

- Power cable
- USB cable